Angiotensin II decreases system A amino acid transporter activity in human placental villous fragments through AT1 receptor activation.
نویسندگان
چکیده
Reduced transport of amino acids from mother to fetus can lead to fetal intrauterine growth restriction (IUGR). The activities of several amino acid transport systems, including system A, are decreased in placental syncytiotrophoblast of IUGR pregnancies. Na(+)-K(+)-ATPase activity provides an essential driving force for Na(+)-coupled system A transport, is decreased in the placenta of IUGR pregnancies, and is decreased by angiotensin II in several tissues. Several reports have shown activation of the fetoplacental renin-angiotensin system (RAS) in IUGR. We investigated the effect of angiotensin II on placental system A transport and Na(+)-K(+)-ATPase activity in placental villi. Placental system A activity in single primary villous fragments was measured as the Na(+)-dependent uptake of alpha-(methylamino)isobutyric acid, and Na(+)/K(+) ATPase activity was measured as ouabain-sensitive uptake of (86)rubidium. Angiotensin II decreased system A activity in a concentration-dependent fashion (10-500 nmol/l). Angiotensin II type 1 receptor (AT1-R) antagonists losartan and AT1-R anti-peptide blocked the angiotensin II effect, but the angiotensin II type 2 receptor antagonist PD-123319 was without effect. System A activity was not altered by preincubation with AT1-R-independent vasoconstrictors, and antioxidants did not prevent the decrease in activity mediated by angiotensin II. Angiotensin II decreased Na(+)-K(+)-ATPase activity by an AT1-R dependent mechanism, and inhibition of Na(+)-K(+)-ATPase activity decreased system A activity in a dose-response fashion. These data suggest that angiotensin II, via AT1-R signaling, decreases system A activity by suppressing Na(+)-K(+)-ATPase in human placental villi, consistent with possible adverse effects of enhanced placental RAS on fetal growth.
منابع مشابه
Angiotensin II type 1 receptor blocker losartan attenuates locomotor, anxiety-like behavior and passive avoidance learning deficits in a sub-chronic stress model
Objective(s): Stress alters sensory and cognitive function in humans and animals. Angiotensin (AT) receptors have demonstrated well-established interactions in sets of physiological phenomena. AT1 receptors can play a part in stress-induced activation of hypothalamic-pituitary-adrenal (HPA) axis; besides angiotensinergic neurotransmission plays a pivotal role in stress-evoked physiological resp...
متن کاملHormonal regulation of glucose and system A amino acid transport in first trimester placental villous fragments.
Alterations in placental nutrient transfer have been implicated in fetal growth abnormalities. In pregnancies complicated by diabetes and accelerated fetal growth, upregulations of glucose transporter 1 (GLUT1) and amino acid transporter system A have been shown in the syncytiotrophoblast of term placenta. In contrast, intrauterine growth restriction is associated with a downregulation of place...
متن کاملHypoxia and the Anticoagulants Dalteparin and Acetylsalicylic Acid Affect Human Placental Amino Acid Transport
BACKGROUND Anticoagulants, e.g. low-molecular weight heparins (LMWHs) and acetylsalicylic acid (ASA) are prescribed to women at risk for pregnancy complications that are associated with impaired placentation and placental hypoxia. Beyond their role as anticoagulants these compounds exhibit direct effects on trophoblast but their impact on placental function is unknown. The amino acid transport ...
متن کاملDifferential Mechanisms of Activation of the Ang Peptide Receptors AT1, AT2, and MAS: Using In Silico Techniques to Differentiate the Three Receptors
The renin-angiotensin system is involved in multiple conditions ranging from cardiovascular disorders to cancer. Components of the pathway, including ACE, renin and angiotensin receptors are targets for disease treatment. This study addresses three receptors of the pathway: AT1, AT2, and MAS and how the receptors are similar and differ in activation by angiotensin peptides. Combining biochemica...
متن کاملRegulation of placental amino acid transporter activity by mammalian target of rapamycin.
The activity of placental amino acid transporters is decreased in intrauterine growth restriction (IUGR), but the underlying regulatory mechanisms have not been established. Inhibition of the mammalian target of rapamycin (mTOR) signaling pathway has been shown to decrease the activity of the system L amino acid transporter in human placental villous fragments, and placental mTOR activity is de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 291 5 شماره
صفحات -
تاریخ انتشار 2006